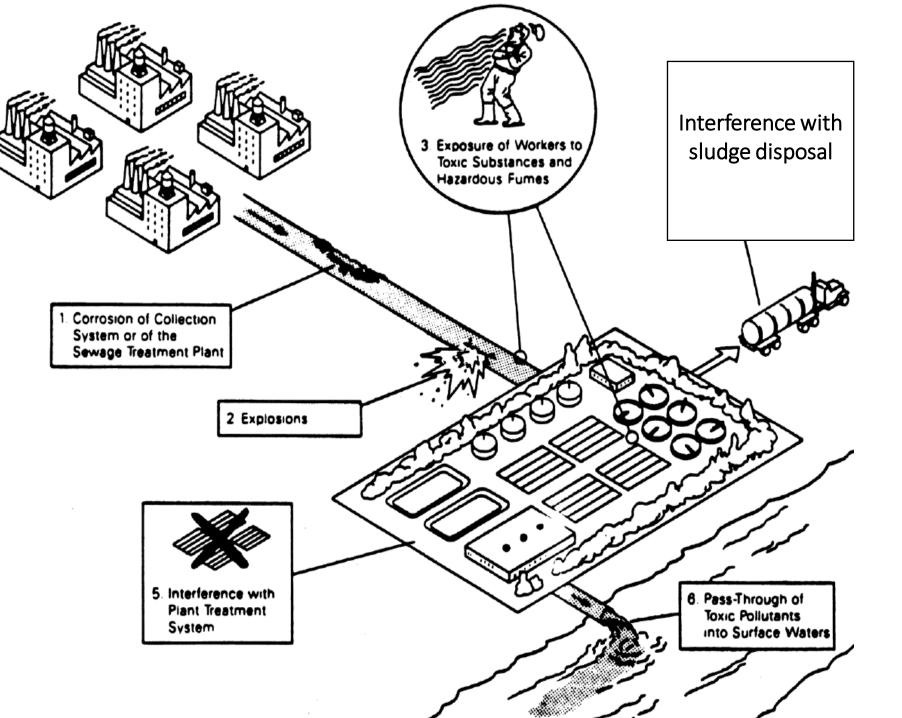
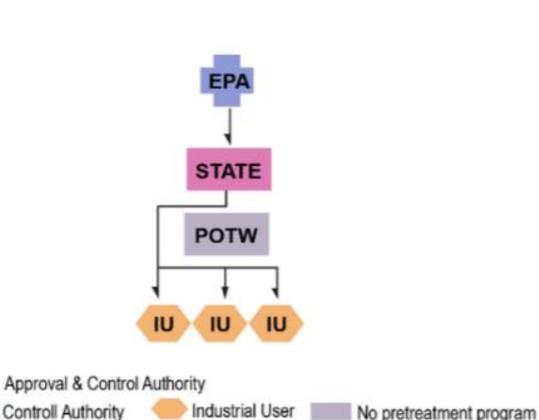


DEPARTMENT OF ENVIRONMENTAL CONSERVATION



Pretreatment Approach for Addressing PFAS in Vermont WWTFs

Nick Giannetti, Pretreatment Section Supervisor

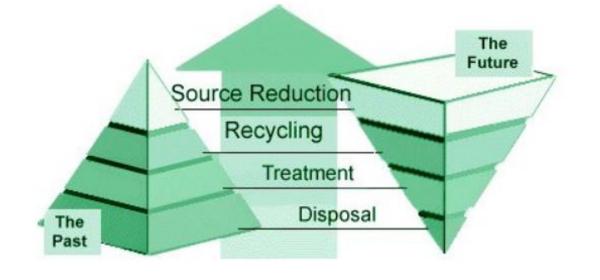

Wastewater Management Program, Vermont Department of Environmental Conservation NERPCA 2022

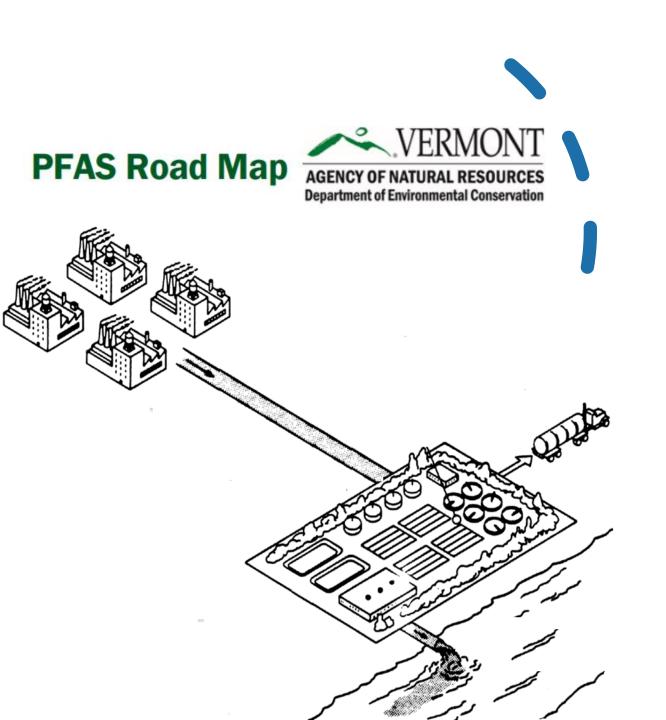
The Pretreatment Program

PFAS concerns:

Pass-through and biosolids quality

Vermont's Pretreatment Program


1of 5... Alabama, Connecticut, Mississippi, Nebraska, and **Vermont**


- 92 POTWs
- 25 POTWS > 1 MGD
- 6 POTWs > 5 MGD
- Small communities with single or sometimes part-time wastewater operator.

States Assuming Direct Responsibility Under 40 CFR 403.10(e) Pollution Prevention, P2, or "Source Reduction" Practices that reduces, eliminates, or prevents pollution at its source.

PFAS is a good candidate for P2:

- Conventional wastewater treatment does not remove PFAS;
- Ecological exposures associated with PFAS entering WWTFs;
- PFAS treatment options are expensive, and residuals and air emission management strategies are still in development;
- PFAS contamination is ubiquitous and widespread.

Source Reduction Model for POTWs

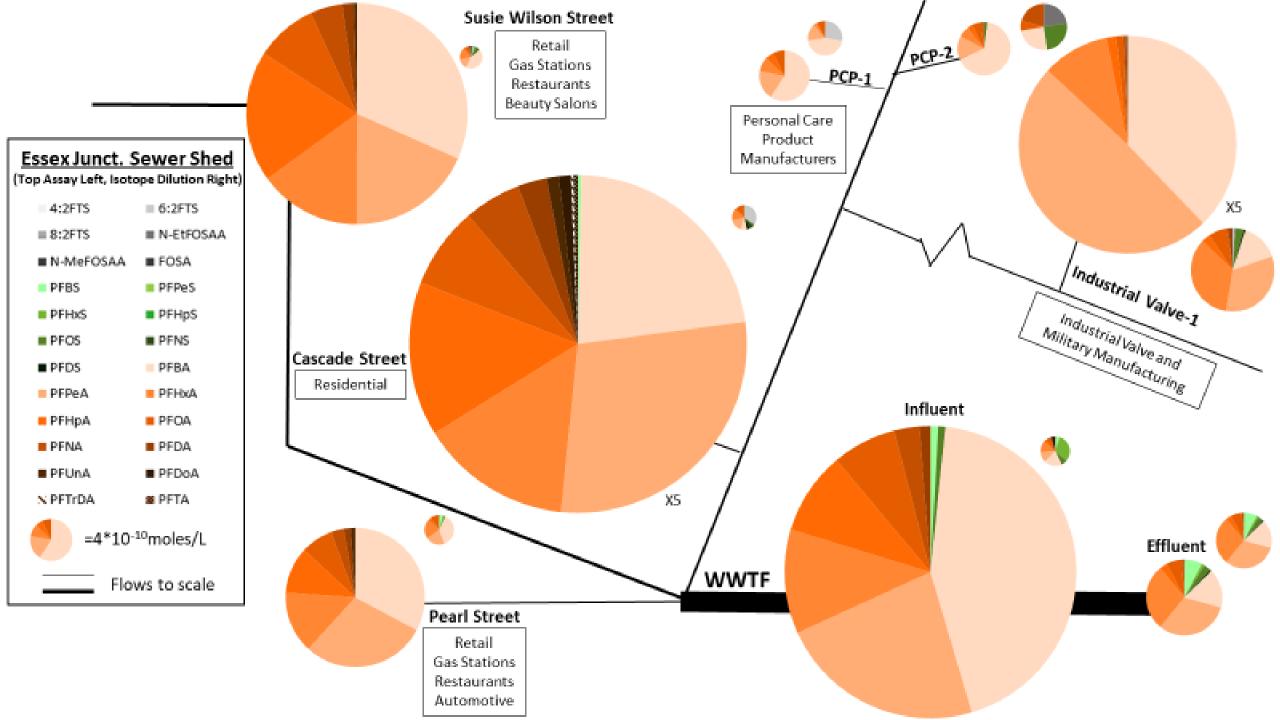
- 1. Characterize Influent, Effluent, Solids
- 2. Characterize Inputs to WWTF

3. Identify PFAS Sources at Industrial Users

4. Implement Source Reduction Strategies

Step 1: Characterize PFAS in Influent, Effluent, & Solids

- Information gained: PFAS concentration, mass load, variability, & signature;
- Tools: Total Oxidizable Precursor (TOP) Assay & time-based composite samples.



Step 2: Characterize Residential, Industrial, and Commercial Sources

- Planning and representative sampling of collection system;
- Review: Sewer connection records and perform window surveys;
- Sampling: pump stations, manholes, individual users.

Town	Site	Sample Type/Freq	Sources
	Suzie Wilson Road	Grab (3)	retail, gas stations, restaurants, beauty salons
	Pearl Street (gravity)	Grab (3)	retail, gas stations, restaurants, automotive services
	Cascade Street	Grab (3)	residential only
Essex	PCP-1	Grab (3)	Personal care product manufacturer
Junction	PCP-2	Grab (3)	Personal care product manufacturer
	Industrial Valve-1	Grab (3)	Industrial valve manufacturer
	POTW Influent	Time Comp (3)	all the above
	POTW Effluent	Time Comp (3)	all the above
	Rogers Rd/PS 7	Grab (3)	residential
	Porter	Grab (3)	hospital, medical clinics
	Pump Station 3	Grab (3)	hospital, college dorms
Middlebury	Pump Station 9	Grab (3)	residential
	North Sector (gravity)	Grab (3)	restaurants, food & beverage manufacturers, fitness gym
	POTW Influent	Time Comp (3)	all of the above
	POTW Influent	Time Comp (3)	all of the above
	Total:	45 Samples	Analysis: EPA M537 (Isotope Dilution), TOP Assay, TSS

		ID	ТОР		
	Grand Total (g/day)	Percentage of Influent	Grand Total (g/day)	Percentage of Influent	
Essex Junction Wastewater Treatment Facility					
PCP-1	0.0015	0.50	0.0224	0.99	
CASCADE STREET	0.0045	1.51	0.2942	12.93	
PEARL STREET MANHOLE	0.0168	5.67	0.1492	6.56	
SUSIE WILSON ROAD	0.0233	7.84	0.0056	0.24	
PCP-2	0.0017	0.56	0.0002	0.01	
INDUSTRIAL VALVE-1	0.0016	0.52	0.0042	0.19	
TOTAL	0.0493	16.59	0.4758	20.91	
INFLUENT	0.2974	100.00	2.2757	100.00	
EFFLUENT	0.5218	175.46	0.1923	8.45	
Middlebury Wastewater Treatment Facility					
NORTH SECTOR	0.0051	11.61	0.1279	54.47	
PORTER	0.0067	15.29	0.0093	3.94	
PUMP STATION 17	0.0236	53.95	0.1018	43.36	
PUMP STATION 3	0.0017	3.81	0.0905	38.54	
PUMP STATION 9	0.0013	3.02	0.0129	5.50	
TOTAL	0.0384	87.68	0.3422	145.81	
INFLUENT	0.0438	100.00	0.2347	100.00	
EFFLUENT	0.1062	242.37	0.2578	109.83	

Steps 3 & 4: Source Identification and Reduction at Industrial User

- Plant walkthrough, written survey, & wastewater sampling of effluent, process steams, & products;
- Voluntary vs. required participation;
- Acknowledge/promote benefits to business for participation;
- Take advantage of State and Federal funding sources (EPA P2 Grant, American Rescue Plan Act).

FY20 EPA P2 Grant

Implement source reduction technical assistance at businesses in National Emphasis Areas:

- Aerospace Product and Parts Manufacturing and Maintenance
- Metal Manufacturing and Fabrication
 - FY20 Grant: 50% match
 - \$200K each. \$400K total. Spent about \$150K.
 - FY22 Grant: no match
 - High administrative burden
 - Recommend: leverage contractors, university students, or temp. staff to assist with analysis & report writing

Considerations when approaching businesses:

Education & transparency key to voluntary participation.

Marketable benefits for business participation:

- Free training;
- Getting ahead of regulatory requirements;
- Free technical assistance;
- Brand: increase commitment to socially and environmentally responsible practices;
- Joining an innovative team.

Can't achieve voluntary participation?

• Authority: State Law, Sewer Use Ordinance, 308 Letter.

Participating Businesses	Plating Operations	Size (gallons per day)	Sources	# Samples
Bennington, VT	Semiconductor – tantalum capacitors. Formation process.	3,000 gpd		3 ID+TOP effluent
Brattleboro, VT	Chromate coating, anodizing, hardcoating, and passivation.	15,000 gpd	PTFE Anodal Paste – Teflon seal for Alum. parts	3 ID+TOP effluent 1 ID Seal Tank 3 ID sludge 1 ID Nickel cake
Burlington, VT	Nickel plating, passivation.	7,500 gpd		3 ID+TOP effluent
Rutland, VT	Electrochemical finishing (melt- out), acid etching.	100,000 gpd	None identified	3 ID+TOP effluent 2 ID sludge
Rutland, VT	Electrochemical finishing (melt- out), acid etching.	150,000 gpd	None identified	3 ID+TOP effluent 2 ID sludge
Rutland, VT	Acid etching, water jetting.	1,200 gpd		3 ID+TOP effluent
Springfield, VT	Hexavalent, chromium, black oxide, and nickel plating. Anodizing. Electropolishing process.	1,500 gpd	6:2 FTS Mist Suppressant	3 ID+TOP effluent
Swanton, VT	Black oxide coating, chrome plating, and acid etching.	2,000 gpd	6:2 FTS Mist Suppressant	3 ID+TOP effluent 1 ID+TOP stormwater
Vergennes, VT	Anodizing, passivation, electroless nickel plating.	18,000 gpd	Etching + stripping of Teflon coated wire + parts	3 ID+TOP effluent 1 ID+TOP Wire Strip 3 ID sludge
9 Businesses			4 sources	41 Samples

Written Survey Takeaways

8 question survey seeking:

- Description of production process and wastewater inputs;
- Mist suppressant current and historical use;
- Current and historical use of fluorinated, fluoro, and propriety surfactants;
 - Obtain SDS sheets;
- Process flow diagram.

Provide time for business to complete survey and conduct follow-up meeting.

Written Survey

- Does your facility conduct any of the following activities (please respond "Yes", "No", or "Don't Know ")?
 - □ Hexavalent Chrome plating
 - □ Chromating
 - □ Chromic acid anodizing
 - □ Chromic acid etching
 - □ Electroless copper and electroless nickel-boron baths
 - Other treatments to improve heat or corrosion resistance, reduce mechanical wear or enhance aesthetic appearance
 - □ Any processes that utilize polytetrafluoroethylene (PTFE) products
 - Any other processes that may utilize surfactants for purposes such as reducing friction/drag, changing surface tension in liquids, etc., through the use of additives
- If "Yes" to any activities in Question #1, please list any fluorinated compounds or PFAS-containing products your facility uses in these processes that you are aware of. Please also provide Safety Data Sheets. Be mindful that PFAS may not be explicitly called out by name for reasons of confidential business information, and so be on the lookout for chemicals that contain "fluor" as part of their names or list descriptions such as "proprietary surfactant."

Written Survey

- If applicable, what other types of chemical and electrochemical finishing of parts are within your facility's capabilities? Please also describe typical parts treated at your facility, including size, substrate, and use.
- Perfluorooctane Sulfonate (PFOS) was commonly used as a mist suppressant or wetting agent until just a few years ago. Please indicate any current or previous use of products containing PFOS (please refer to the attached list of PFAS-Containing Products). Please indicate if the product is currently in use at the facility or was used within the last 10 years.
- Does your facility use any of the PFOS replacement products (i.e., products potentially containing 6:2-FTS) included on the attached list of PFAS-Containing Products?

Written Survey

- What other, if any, fluorocarbons are used at the facility? Any products you use with "perfluoro-" in the name? Please provide Safety Data Sheets.
- Does your facility have a fire suppression system that includes the use of foam, in particular a system that utilizes aqueous film forming foam (AFFF)? If so, what types of AFFF are used (or have been used in the past), and are there SDSs available for these products?
- For any processes or activities performed at the facility that use products known or suspected to contain PFAS, please provide a process flow diagram (PFD) showing the process inputs (e.g., chemicals, water, parts, etc.) and outputs (e.g., spent baths, wastewater, evaporation loss, parts to additional production step, etc.).
 Please see attached Metal Finishing "Process Unit" as an example. If you do not have a PFD available, please prepare a simple sketch in the space provided below or provide additional sheets as needed.

What Have We Seen?

- Mist suppressants
- PTFE seal coating
- Etching of Teflon parts
- Stripping of Teflon wire
- Propriety anionic surfactants used in nickel plating?

PTFE Paste

- Specialty dip coating used for finished aluminum aerospace parts
- Discharge rate <1 gallon per month from dragout
- Spent bath is drummed and shipped as haz. waste

MATERIAL SAFETY DATA SHEET Anodal PTFE liq

Page 1

Substance key: COV231607Revision Date: 11/06/2009Version : 4 - 1 / USADate of printing :11/06/2009

Section 01 - Product Information

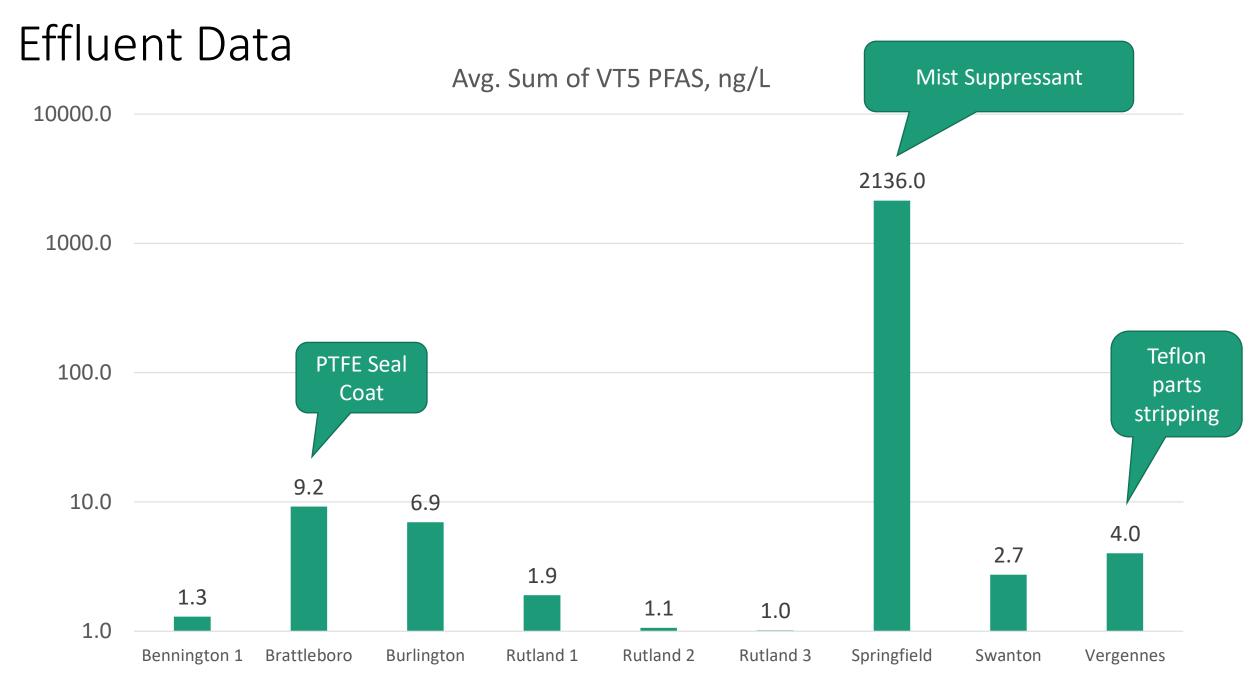
Identification of the company:	Clariant Corporation 4000 Monroe Road Charlotte, NC, 28205 Telephone No.: +1 704 331 7000	
	Information of the substance/preparation: Pigments and Additives Product Safety 1-401-823-2366	
	Emergency tel. number: +1 800-424-9300 CHEMTREC	
Trade name: Material number:	Anodal PTFE liq 161576	
Formula: Primary product use:		
Chemical family:	Fluoropolymer Dispersion	

Section 02 - Composition information on hazardous ingredients

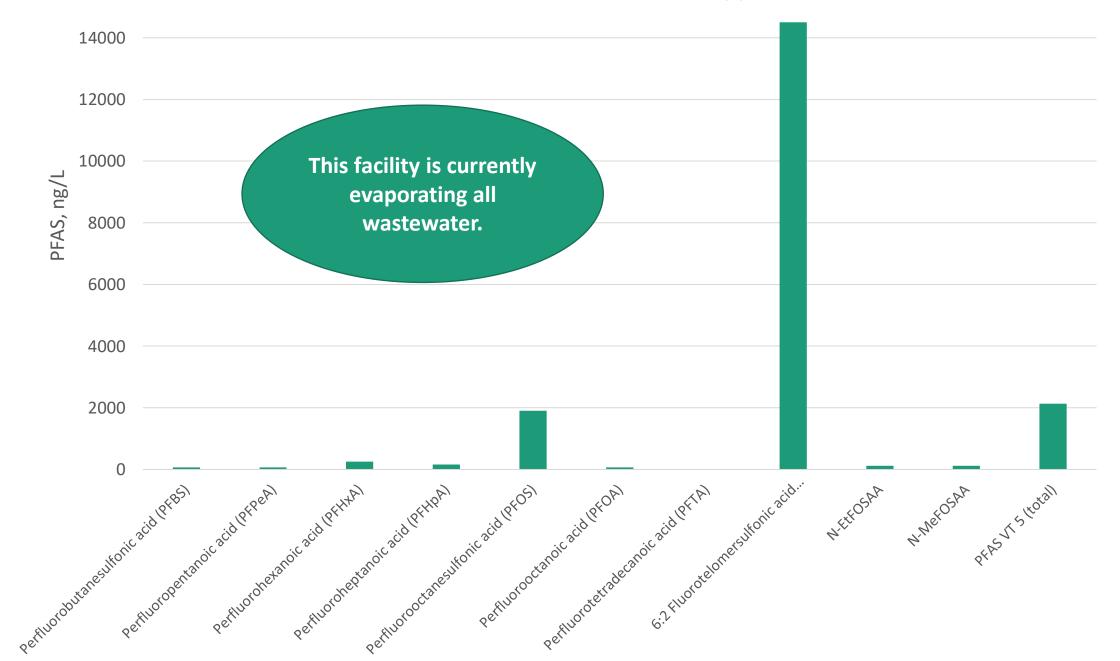
Hazardous ingredients:

Component	CAS-no. (Trade secret	Concentration	
-	no.)		
Polytetrafluoroethylene	9002-84-0	50 - 70 %	
Proprietary Ingredient	NJTSR#678290-00-2-	1 - 5 %	
	7615-P PCP		

Etching & Stripping of Teflon Wire + Parts

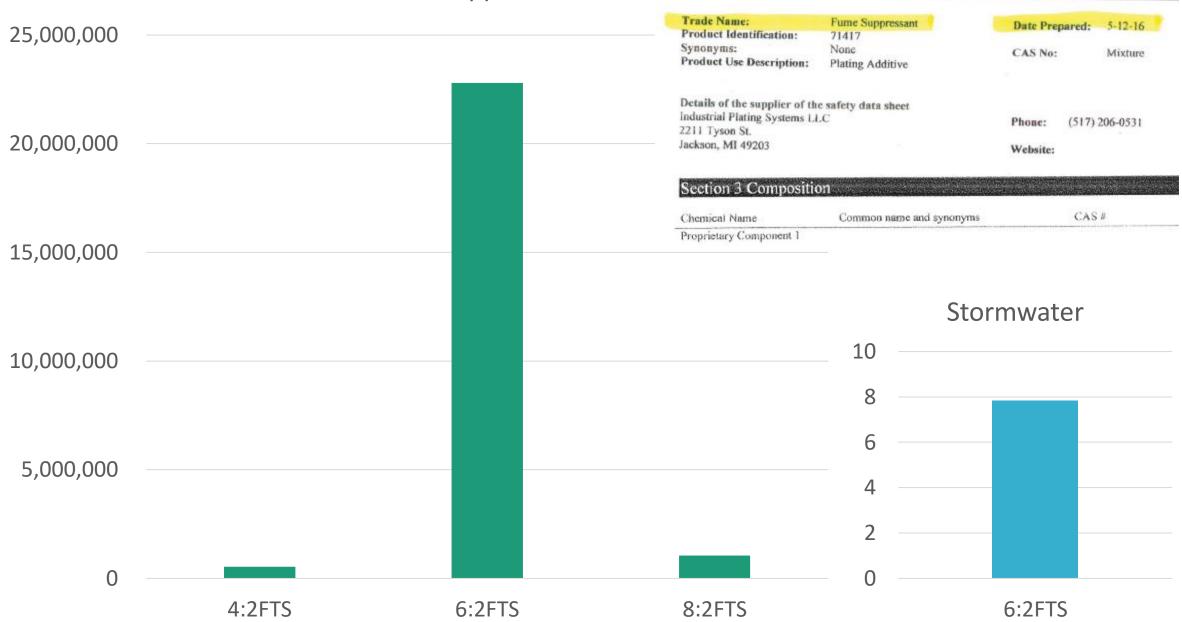

- Teflon wire stripping:
 - Molten salt bath used to strip fine wires.
 - 1x / week.
- Teflon surface etching (flouroetching) of Teflon parts in lab.
- Batch discharge of 1 10 gallons per month.

Presented courtesy of Aetna Plastics Corp. (www.aetnaplastics.com)


MATERIAL SAFETY DATA SHEET

SECTION 1 - CHEMICAL AND CON	PANY	DENTIFICATION	10 241			
IDENTITY FluoroEtch® Safety Solvent			DATE PREPARED 12/3/2012			
SYNONYMS, CHEMICAL NAMES, COMMON NAMES Sodium Naphthalide in Glycol Ether			USE Fluoropolymer Etchant			
SUPPLIER'S NAME Acton Technologies			EMERGENCY TELEPHONE NUMBER CHEMTREC: 1-800-424-9300 (Within Continental U.S.) CHEMTREC: 1-703-527-3887 (Outside U.S.)			
				DEKRA ISO 9001:2008 Getification #16102.01 ISO 14001:2004 Getification #16102.01		
			AN ISO 9001 CERTIFIED COMPANY AN ISO 14001 CERTIFIED COMPANY			
NORTH AMERICAN OPERATIONS	NORTH AMERICAN OPERATIONS EUROPE			us.		
100 THOMPSON STREET ■ P.O. BOX 726 PITTSTON, PENNSYLVANIA ■ 18640 ■ USA PHONE: 570.654.0612 FAX:570.654.2810	IRELAN PHONE:	COUNTY LIMERICK D + 353.61.395.222 353.61.395.333	25121 BRE 9.61.395.222 PHONE: + 3		ONLINE ORDERING: WWW.ACTONTECH.COM	
SECTION 3 - COMPOSITION/INFOR	MATIO	IN ON INGREDIEN	TS			
INGREDIENTS			CAS #		WT. %	
Sodium naphthalide		34	3481-12-7		10.00-30.00	
2-Methoxyethyl ether						

VT 5 groundwater standard = sum of PFOA, PFOS, PFNA, PFHxS, PFHpA not to exceed 20 ng/L


Metal Finisher Effluent with Mist Suppressant

Mist Suppressant

ng/L

Section 1 Identification

Mist Suppressant Alternatives

- Atotech Fumalock:
 - fluorine-free, non-PFOS, non-PFAS fume suppressant;
- TIB Chemical, TIB Suract CR-H:
 - fluorine-free surfactant;
- Dynamix, Inc., DYNAPLATE Cr FSN:
 - PFOS, PFAS and fluoride free fume suppressant;
- Haviland Products Company, Havachrome Mist Eliminator III
 - Coconut oil 1,4-dioxane byproduct;
- **MacDermid** may also offer PFAS-free/lower-PFAS alternatives.

Next Steps:

Trial Alternatives

1. Qualitative bench-top comparison of the performance of the chrome plating bath solution;

2. Select an alternative and conduct a full-scale pilot test using a new plating bath;

3. Monitor and record key performance indicators (e.g., surface tension, industrial hygiene measurements) from new and existing PFAS baths during the pilot test;

4. Compare performance and costs of PFAS-free to current PFAS-containing fume suppressant.

Leverage State and Federal Funding

EPA Performance Partnership Grant - \$60K, no match

EPA P2 Grant - \$400K, 50% match

Clean Water State Revolving Fund – 100% forgiveness on planning loans for IU Surveys & Local Limits

ARPA - VT State Grant Program to fund:

- Private Businesses: up to \$1,000,000 for pretreatment
- Municipalities: up to \$200,000
 - Industrial User Surveys
 - Local Limits Development

DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Take Home:

PFAS Reports: https://dec.vermont.gov/pfas P2 Grant: https://dec.vermont.gov/pfas/p2-grant ARPA – Pretreatment Initiative: https://anr.vermont.gov/specialtopics/arpa-vermont/pretreatmentcapacity

- 1. P2 at industrial users is the most realistic method for preventing PFAS from entering the WWTF. Residential source reduction remains a challenge. P2 grant highlights methodology identify sources at IUs.
- 2. Metal finishers in VT are not a significant source of VT5 PFAS to POTWs. Metal finishers can perform a variety of specialized practices that contain PFAS, mist suppressant use being the most significant.
- The methodology used in this study may be a suitable model for small

 medium sized POTWs to identify and reduce sources of PFAS in
 wastewater generated by their communities.
- 4. Communities should leverage local, state, and federal funding sources to support source ID and reduction work.

Nick Giannetti, Wastewater Pretreatment Program Eamon Twohig, Residuals Management & Emerging Contaminants Joshua Burns, Residuals Management & Emerging Contaminants

Bob Wells, Chief Operator

Jim Jutras, Water Quality Superintendent

Steven LaRosa, Team Leader Margaret Reilly, PE James Gascoyne, PE

Christine Beling, Project Engineer, Region 1

Dr. Paula Mouser, Civil & Env Engineering Sydney Adams, MS Student Lindsay Guertin

SANBORN HEAD

Matthew Estabrooks, PE Stephen Zemba, PhD, PE Bob Pojasek

Current Regulatory Landscape

2 draft pretreatment permits with PFAS monitoring requirements:

- 1 metal finisher & 1 landfill
- PFAS treatment pilot project
- No effluent limits

No monitoring required in POTW permits at this time:

- 2023 study to monitor all WWTFs using ARPA funds
- Money reserved for follow-up source reduction work
- Some groundwater has been impacted at fields with land-applied biosolids

WQS development planned by 2024:

- Surface water & fish tissue monitoring conducted at target areas throughout the State
- PFOS detected in nearly all samples. Average PFOS 2.4 ppb, Max 15 ppb.

Following 2021 PFAS Roadmap focusing on Source Reduction.

DEPARTMENT OF ENVIRONMENTAL CONSERVATION